Hydrogen Central

New Solar Discovery Could Revolutionize Hydrogen Production

hydrogen production solar

New Solar Discovery Could Revolutionize Hydrogen Production

Experts in nanoscale chemistry have made significant progress toward sustainable and efficient hydrogen production from water using solar power.

An international collaborative study led by Flinders University, involving researchers from South Australia, the US, and Germany, has uncovered a novel solar cell process that could play a key role in future technologies for photocatalytic water splitting—a critical step in green hydrogen production.

The study highlights a new class of kinetically stable “core and shell Sn(II)-perovskite” oxide solar material, which, when combined with a catalyst developed by US researchers under Professor Paul Maggard, shows promise as a catalyst for the oxygen evolution reaction. This reaction is a vital component in generating pollution-free hydrogen energy.

Published in the peer-reviewed Journal of Physical Chemistry C, these findings open new pathways for advancing carbon-free green hydrogen technologies. The approach leverages non-greenhouse-gas-emitting power sources and aims to deliver high-performance, cost-effective electrolysis for a sustainable energy future.

Key Insights

lead author Professor Gunther Andersson, from the Flinders Institute for Nanoscale Science and Technology at the College of Science and Engineering, says :

This latest study is an important step forward in understanding how these tin compounds can be stabilized and effective in water,

“Our reported material points to a novel chemical strategy for absorbing the broad energy range of sunlight and using it to drive fuel-producing reactions at its surfaces,” adds Professor Paul Maggard, from the Department of Chemistry and Biochemistry at Baylor University.

Already these tin and oxygen compounds are used in a variety of applications, including catalysis, diagnostic imaging, and therapeutic drugs. However, Sn(II) compounds are reactive with water and dioxygen, which can limit their technological applications.

Advances in Perovskite Solar Research

Solar photovoltaic research around the world is focusing on developing cost-effective, high-performance perovskite generation systems as an alternative to conventional existing silicon and other panels.

Low-emission hydrogen can be produced from water through electrolysis (when an electric current splits water into hydrogen and oxygen) or thermochemical water splitting, a process that also can be powered by concentrated solar power or waste heat from nuclear power reactors.

Hydrogen can be produced from diverse resources including fossil fuels such as natural gas and biological biomass, but the environmental impact and energy efficiency of hydrogen depends on how it is produced.

Solar-driven processes use light as an agent for hydrogen production and is a potential alternative for generating industrial-scale hydrogen.

The new study was built on earlier work led by Professor Paul Maggard, now based at the Baylor University Department of Chemistry and Biochemistry in Texas, and previously North Carolina State University.

The new article in American Chemical Society (ACS) Journal of Physical Chemistry C features input by Flinders University and University of Adelaide experts, including coauthor Professor of Chemistry Greg Metha, who is also involved in exploring the photocatalytic activity of metal clusters on oxide surfaces in reactor technologies, and Universität Münster in Germany.

READ the latest news shaping the hydrogen market at Hydrogen Central

New Solar Discovery Could Revolutionize Hydrogen Production, source

Get our LinkedIn updates!

Join our weekly newsletter!

Follow us

Don't be shy, get in touch. We love meeting interesting people and making new friends.