PNNL New Clean Energy Process Converts Methane to Hydrogen with Zero Carbon Dioxide Emissions.
Researchers from Pacific Northwest National Laboratory (PNNL) and West Virginia University (WVU), in collaboration with industry partners Southern California Gas Company (SoCalGas) and C4-MCP, have developed a process that converts methane—the primary component of natural gas—into hydrogen while emitting zero CO2. The process also creates carbon solids for manufacturing applications.
The hydrogen can be used in fuel cells for transportation including trucks, and large-scale energy storage, while the high-quality carbon products are suitable for a wide range of manufacturing applications, such as electronics, medical devices, aerospace composite materials, and building systems. Commercial sale of the carbon products offsets the cost of hydrogen production—a critical factor for industry.
Ron Kent, technology development manager for low carbon resources at SoCalGas:
Hydrogen fuel will be a necessary component in achieving carbon neutrality, so we have to figure out ways to produce it cleanly and economically
“The company co-sponsored the research along with C4-MCP, LLC, and the U.S. Department of Energy’s (DOE) Hydrogen and Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy. “Although this new method is still in the early stages, the results of the lab-scale tests look super promising,” Kent said.
The novel “blue hydrogen” approach—clean hydrogen from natural gas versus renewable resources—could help California achieve its goal of cutting greenhouse gas emissions by 40 percent from 1990 levels. As part of that goal, the state aims to replace five million standard gas-powered vehicles with low- or zero-emission vehicles by 2030. Those targets will also help the state meet health-based air quality requirements established in the federal Clean Air Act.

In collaboration with industry, researchers from Pacific Northwest National Laboratory and West Virginia University developed a process for converting methane to hydrogen without emitting any carbon dioxide. The process also creates a crystalline carbon product for manufacturing applications. (Compilation by Shannon Colson | Pacific Northwest National Laboratory)
Growing carbon from nickel
For decades, PNNL scientists and engineers have led research using catalysts to reduce CO2 emissions from industrial processes and transportation. Former PNNL research engineer, John Hu, now an endowed chair professor of the Statler College of Engineering and Mineral Resources at WVU, was one of those engineers.
Hu experimented with catalysts and processes that could cleanly convert methane—the primary component of natural gas—into both hydrogen and carbon during a process known as pyrolysis. During pyrolysis, a gas or liquid is cycled over a solid catalyst material under high pressure and temperature inside a closed vessel. The ensuing chemical reaction transforms the material’s basic properties into other valuable fuels and products.
Continuing his research at WVU, Hu discovered a nickel-based catalyst formulation that stayed anchored to its support structure while growing carbon nanocrystals. This anchoring could enable the recovery of pure carbon nanotubes (CNT) and nanofibers, as well as catalyst regeneration.
“The purity and crystallinity of carbon products made from natural gas is important,” said Hu. “The carbon products are not necessarily sold just in existing markets. They can be further upgraded to penetrate a number of markets where carbon products are currently made from petroleum.”
Hu’s results, published in 2017 in Catalysis Science and Technology, caught the attention of PNNL and industry, and formed the basis for the national laboratory-university-industry project through funding from the DOE Office of Energy Efficiency and Renewable Energy’s H2@Scale initiative for clean hydrogen use across the economy.
Check out the full story here: New Clean Energy Process Converts Methane to Hydrogen with Zero Carbon Dioxide Emissions